Total Nb of available Diagnostics: ndiagt= 288 ------------------------------------------------------------------------------------ Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) ------------------------------------------------------------------------------------ 1 |SDIAG1 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #1 2 |SDIAG2 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #2 3 |SDIAG3 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #3 4 |SDIAG4 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #4 5 |SDIAG5 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #5 6 |SDIAG6 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #6 7 |SDIAG7 | 1 | |SU L1|user-defined |User-Defined U.pt Surface Diagnostic #7 8 |SDIAG8 | 1 | |SV L1|user-defined |User-Defined V.pt Surface Diagnostic #8 9 |SDIAG9 | 1 | 10 |UU L1|user-defined |User-Defined U.vector Surface Diag. #9 10 |SDIAG10 | 1 | 9 |VV L1|user-defined |User-Defined V.vector Surface Diag. #10 11 |UDIAG1 | 50 | |SM MR|user-defined |User-Defined Model-Level Diagnostic #1 12 |UDIAG2 | 50 | |SM MR|user-defined |User-Defined Model-Level Diagnostic #2 13 |UDIAG3 | 50 | |SMR MR|user-defined |User-Defined Model-Level Diagnostic #3 14 |UDIAG4 | 50 | |SMR MR|user-defined |User-Defined Model-Level Diagnostic #4 15 |UDIAG5 | 50 | |SU MR|user-defined |User-Defined U.pt Model-Level Diag. #5 16 |UDIAG6 | 50 | |SV MR|user-defined |User-Defined V.pt Model-Level Diag. #6 17 |UDIAG7 | 50 | 18 |UUR MR|user-defined |User-Defined U.vector Model-Lev Diag.#7 18 |UDIAG8 | 50 | 17 |VVR MR|user-defined |User-Defined V.vector Model-Lev Diag.#8 19 |UDIAG9 | 50 | |SM ML|user-defined |User-Defined Phys-Level Diagnostic #9 20 |UDIAG10 | 50 | |SM ML|user-defined |User-Defined Phys-Level Diagnostic #10 21 |SDIAGC | 1 | 22 |SM C L1|user-defined |User-Defined Counted Surface Diagnostic 22 |SDIAGCC | 1 | |SM L1|count |User-Defined Surface Diagnostic Counter 23 |ETAN | 1 | |SM M1|m |Surface Height Anomaly 24 |ETANSQ | 1 | |SM P M1|m^2 |Square of Surface Height Anomaly 25 |DETADT2 | 1 | |SM M1|m^2/s^2 |Square of Surface Height Anomaly Tendency 26 |THETA | 50 | |SMR MR|degC |Potential Temperature 27 |SALT | 50 | |SMR MR|psu |Salinity 28 |RELHUM | 50 | |SMR MR|percent |Relative Humidity 29 |SALTanom| 50 | |SMR MR|psu |Salt anomaly (=SALT-35; g/kg) 30 |UVEL | 50 | 31 |UUR MR|m/s |Zonal Component of Velocity (m/s) 31 |VVEL | 50 | 30 |VVR MR|m/s |Meridional Component of Velocity (m/s) 32 |WVEL | 50 | |WM LR|m/s |Vertical Component of Velocity (r_units/s) 33 |THETASQ | 50 | |SMRP MR|degC^2 |Square of Potential Temperature 34 |SALTSQ | 50 | |SMRP MR|(psu)^2 |Square of Salinity 35 |SALTSQan| 50 | |SMRP MR|(psu)^2 |Square of Salt anomaly (=(SALT-35)^2 (g^2/kg^2) 36 |UVELSQ | 50 | 37 |UURP MR|m^2/s^2 |Square of Zonal Comp of Velocity (m^2/s^2) 37 |VVELSQ | 50 | 36 |VVRP MR|m^2/s^2 |Square of Meridional Comp of Velocity (m^2/s^2) 38 |WVELSQ | 50 | |WM P LR|m^2/s^2 |Square of Vertical Comp of Velocity 39 |UE_VEL_C| 50 | 40 |UMR MR|m/s |Eastward Velocity (m/s) (cell center) 40 |VN_VEL_C| 50 | 39 |VMR MR|m/s |Northward Velocity (m/s) (cell center) 41 |UV_VEL_C| 50 | 41 |UMR MR|m^2/s^2 |Product of horizontal Comp of velocity (cell center) 42 |UV_VEL_Z| 50 | 42 |UZR MR|m^2/s^2 |Meridional Transport of Zonal Momentum (m^2/s^2) 43 |WU_VEL | 50 | |WU LR|m.m/s^2 |Vertical Transport of Zonal Momentum 44 |WV_VEL | 50 | |WV LR|m.m/s^2 |Vertical Transport of Meridional Momentum 45 |UVELMASS| 50 | 46 |UUr MR|m/s |Zonal Mass-Weighted Comp of Velocity (m/s) 46 |VVELMASS| 50 | 45 |VVr MR|m/s |Meridional Mass-Weighted Comp of Velocity (m/s) 47 |WVELMASS| 50 | |WM LR|m/s |Vertical Mass-Weighted Comp of Velocity 48 |PhiVEL | 50 | 45 |SMR P MR|m^2/s |Horizontal Velocity Potential (m^2/s) 49 |PsiVEL | 50 | 48 |SZ P MR|m.m^2/s |Horizontal Velocity Stream-Function 50 |UTHMASS | 50 | 51 |UUr MR|degC.m/s |Zonal Mass-Weight Transp of Pot Temp 51 |VTHMASS | 50 | 50 |VVr MR|degC.m/s |Meridional Mass-Weight Transp of Pot Temp 52 |WTHMASS | 50 | |WM LR|degC.m/s |Vertical Mass-Weight Transp of Pot Temp (K.m/s) 53 |USLTMASS| 50 | 54 |UUr MR|psu.m/s |Zonal Mass-Weight Transp of Salinity 54 |VSLTMASS| 50 | 53 |VVr MR|psu.m/s |Meridional Mass-Weight Transp of Salinity 55 |WSLTMASS| 50 | |WM LR|psu.m/s |Vertical Mass-Weight Transp of Salinity 56 |UVELTH | 50 | 57 |UUR MR|degC.m/s |Zonal Transport of Pot Temp 57 |VVELTH | 50 | 56 |VVR MR|degC.m/s |Meridional Transport of Pot Temp 58 |WVELTH | 50 | |WM LR|degC.m/s |Vertical Transport of Pot Temp 59 |UVELSLT | 50 | 60 |UUR MR|psu.m/s |Zonal Transport of Salinity 60 |VVELSLT | 50 | 59 |VVR MR|psu.m/s |Meridional Transport of Salinity 61 |WVELSLT | 50 | |WM LR|psu.m/s |Vertical Transport of Salinity 62 |UVELPHI | 50 | 63 |UUr MR|m^3/s^3 |Zonal Mass-Weight Transp of Pressure Pot.(p/rho) Anomaly 63 |VVELPHI | 50 | 62 |VVr MR|m^3/s^3 |Meridional Mass-Weight Transp of Pressure Pot.(p/rho) Anomaly 64 |RHOAnoma| 50 | |SMR MR|kg/m^3 |Density Anomaly (=Rho-rhoConst) 65 |RHOANOSQ| 50 | |SMRP MR|kg^2/m^6 |Square of Density Anomaly (=(Rho-rhoConst)^2) 66 |URHOMASS| 50 | 67 |UUr MR|kg/m^2/s |Zonal Transport of Density 67 |VRHOMASS| 50 | 66 |VVr MR|kg/m^2/s |Meridional Transport of Density 68 |WRHOMASS| 50 | |WM LR|kg/m^2/s |Vertical Transport of Density 69 |WdRHO_P | 50 | |WM LR|kg/m^2/s |Vertical velocity times delta^k(Rho)_at-const-P 70 |WdRHOdP | 50 | |WM LR|kg/m^2/s |Vertical velocity times delta^k(Rho)_at-const-T,S 71 |PHIHYD | 50 | |SMR MR|m^2/s^2 |Hydrostatic Pressure Pot.(p/rho) Anomaly 72 |PHIHYDSQ| 50 | |SMRP MR|m^4/s^4 |Square of Hyd. Pressure Pot.(p/rho) Anomaly 73 |PHIBOT | 1 | |SM M1|m^2/s^2 |Bottom Pressure Pot.(p/rho) Anomaly 74 |PHIBOTSQ| 1 | |SM P M1|m^4/s^4 |Square of Bottom Pressure Pot.(p/rho) Anomaly 75 |PHIHYDcR| 50 | |SMR MR|m^2/s^2 |Hydrostatic Pressure Pot.(p/rho) Anomaly @ const r 76 |MXLDEPTH| 1 | |SM M1|m |Mixed-Layer Depth (>0) 77 |DRHODR | 50 | |SM LR|kg/m^4 |Stratification: d.Sigma/dr (kg/m3/r_unit) 78 |CONVADJ | 50 | |SMR LR|fraction |Convective Adjustment Index [0-1] 79 |oceTAUX | 1 | 80 |UU U1|N/m^2 |zonal surface wind stress, >0 increases uVel 80 |oceTAUY | 1 | 79 |VV U1|N/m^2 |meridional surf. wind stress, >0 increases vVel 81 |atmPload| 1 | |SM U1|Pa |Atmospheric pressure loading 82 |sIceLoad| 1 | |SM U1|kg/m^2 |sea-ice loading (in Mass of ice+snow / area unit) 83 |oceFWflx| 1 | |SM U1|kg/m^2/s |net surface Fresh-Water flux into the ocean (+=down), >0 decreases salinity 84 |oceSflux| 1 | |SM U1|g/m^2/s |net surface Salt flux into the ocean (+=down), >0 increases salinity 85 |oceQnet | 1 | |SM U1|W/m^2 |net surface heat flux into the ocean (+=down), >0 increases theta 86 |oceQsw | 1 | |SM U1|W/m^2 |net Short-Wave radiation (+=down), >0 increases theta 87 |oceFreez| 1 | |SM U1|W/m^2 |heating from freezing of sea-water (allowFreezing=T) 88 |TRELAX | 1 | |SM U1|W/m^2 |surface temperature relaxation, >0 increases theta 89 |SRELAX | 1 | |SM U1|g/m^2/s |surface salinity relaxation, >0 increases salt 90 |surForcT| 1 | |SM U1|W/m^2 |model surface forcing for Temperature, >0 increases theta 91 |surForcS| 1 | |SM U1|g/m^2/s |model surface forcing for Salinity, >0 increases salinity 92 |TFLUX | 1 | |SM U1|W/m^2 |total heat flux (match heat-content variations), >0 increases theta 93 |SFLUX | 1 | |SM U1|g/m^2/s |total salt flux (match salt-content variations), >0 increases salt 94 |RCENTER | 50 | |SM MR|m |Cell-Center Height 95 |RSURF | 1 | |SM M1|m |Surface Height 96 |TOTUTEND| 50 | 97 |UUR MR|m/s/day |Tendency of Zonal Component of Velocity 97 |TOTVTEND| 50 | 96 |VVR MR|m/s/day |Tendency of Meridional Component of Velocity 98 |TOTTTEND| 50 | |SMR MR|degC/day |Tendency of Potential Temperature 99 |TOTSTEND| 50 | |SMR MR|psu/day |Tendency of Salinity ------------------------------------------------------------------------------------ Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) ------------------------------------------------------------------------------------ 100 |MoistCor| 50 | |SM MR|W/s^2 |Heating correction due to moist thermodynamics 101 |AB_gU | 50 | 102 |UUR MR|m/s^2 |U momentum tendency from Adams-Bashforth 102 |AB_gV | 50 | 101 |VVR MR|m/s^2 |V momentum tendency from Adams-Bashforth 103 |AB_gT | 50 | |SMR MR|degC/s |Potential Temp. tendency from Adams-Bashforth 104 |AB_gS | 50 | |SMR MR|psu/s |Salinity tendency from Adams-Bashforth 105 |gTinAB | 50 | |SMR MR|degC/s |Potential Temp. tendency going in Adams-Bashforth 106 |gSinAB | 50 | |SMR MR|psu/s |Salinity tendency going in Adams-Bashforth 107 |ADVr_TH | 50 | |WM LR|degC.m^3/s |Vertical Advective Flux of Pot.Temperature 108 |ADVx_TH | 50 | 109 |UU MR|degC.m^3/s |Zonal Advective Flux of Pot.Temperature 109 |ADVy_TH | 50 | 108 |VV MR|degC.m^3/s |Meridional Advective Flux of Pot.Temperature 110 |DFrE_TH | 50 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Explicit part) 111 |DFxE_TH | 50 | 112 |UU MR|degC.m^3/s |Zonal Diffusive Flux of Pot.Temperature 112 |DFyE_TH | 50 | 111 |VV MR|degC.m^3/s |Meridional Diffusive Flux of Pot.Temperature 113 |DFrI_TH | 50 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Implicit part) 114 |ADVr_SLT| 50 | |WM LR|psu.m^3/s |Vertical Advective Flux of Salinity 115 |ADVx_SLT| 50 | 116 |UU MR|psu.m^3/s |Zonal Advective Flux of Salinity 116 |ADVy_SLT| 50 | 115 |VV MR|psu.m^3/s |Meridional Advective Flux of Salinity 117 |DFrE_SLT| 50 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity (Explicit part) 118 |DFxE_SLT| 50 | 119 |UU MR|psu.m^3/s |Zonal Diffusive Flux of Salinity 119 |DFyE_SLT| 50 | 118 |VV MR|psu.m^3/s |Meridional Diffusive Flux of Salinity 120 |DFrI_SLT| 50 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity (Implicit part) 121 |SALTFILL| 50 | |SM MR|psu.m^3/s |Filling of Negative Values of Salinity 122 |VISCAHZ | 50 | |SZ MR|m^2/s |Harmonic Visc Coefficient (m2/s) (Zeta Pt) 123 |VISCA4Z | 50 | |SZ MR|m^4/s |Biharmonic Visc Coefficient (m4/s) (Zeta Pt) 124 |VISCAHD | 50 | |SM MR|m^2/s |Harmonic Viscosity Coefficient (m2/s) (Div Pt) 125 |VISCA4D | 50 | |SM MR|m^4/s |Biharmonic Viscosity Coefficient (m4/s) (Div Pt) 126 |VISCAHW | 50 | |WM LR|m^2/s |Harmonic Viscosity Coefficient (m2/s) (W Pt) 127 |VISCA4W | 50 | |WM LR|m^4/s |Biharmonic Viscosity Coefficient (m4/s) (W Pt) 128 |VAHZMAX | 50 | |SZ MR|m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Zeta Pt) 129 |VA4ZMAX | 50 | |SZ MR|m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Zeta Pt) 130 |VAHDMAX | 50 | |SM MR|m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Div Pt) 131 |VA4DMAX | 50 | |SM MR|m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Div Pt) 132 |VAHZMIN | 50 | |SZ MR|m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Zeta Pt) 133 |VA4ZMIN | 50 | |SZ MR|m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Zeta Pt) 134 |VAHDMIN | 50 | |SM MR|m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Div Pt) 135 |VA4DMIN | 50 | |SM MR|m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Div Pt) 136 |VAHZLTH | 50 | |SZ MR|m^2/s |Leith Harm Visc Coefficient (m2/s) (Zeta Pt) 137 |VA4ZLTH | 50 | |SZ MR|m^4/s |Leith Biharm Visc Coefficient (m4/s) (Zeta Pt) 138 |VAHDLTH | 50 | |SM MR|m^2/s |Leith Harm Visc Coefficient (m2/s) (Div Pt) 139 |VA4DLTH | 50 | |SM MR|m^4/s |Leith Biharm Visc Coefficient (m4/s) (Div Pt) 140 |VAHZLTHD| 50 | |SZ MR|m^2/s |LeithD Harm Visc Coefficient (m2/s) (Zeta Pt) 141 |VA4ZLTHD| 50 | |SZ MR|m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Zeta Pt) 142 |VAHDLTHD| 50 | |SM MR|m^2/s |LeithD Harm Visc Coefficient (m2/s) (Div Pt) 143 |VA4DLTHD| 50 | |SM MR|m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Div Pt) 144 |VAHZSMAG| 50 | |SZ MR|m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Zeta Pt) 145 |VA4ZSMAG| 50 | |SZ MR|m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Zeta Pt) 146 |VAHDSMAG| 50 | |SM MR|m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Div Pt) 147 |VA4DSMAG| 50 | |SM MR|m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Div Pt) 148 |momKE | 50 | |SMR MR|m^2/s^2 |Kinetic Energy (in momentum Eq.) 149 |momHDiv | 50 | |SMR MR|s^-1 |Horizontal Divergence (in momentum Eq.) 150 |momVort3| 50 | |SZR MR|s^-1 |3rd component (vertical) of Vorticity 151 |Strain | 50 | |SZR MR|s^-1 |Horizontal Strain of Horizontal Velocities 152 |Tension | 50 | |SMR MR|s^-1 |Horizontal Tension of Horizontal Velocities 153 |UBotDrag| 50 | 154 |UUR MR|m/s^2 |U momentum tendency from Bottom Drag 154 |VBotDrag| 50 | 153 |VVR MR|m/s^2 |V momentum tendency from Bottom Drag 155 |USidDrag| 50 | 156 |UUR MR|m/s^2 |U momentum tendency from Side Drag 156 |VSidDrag| 50 | 155 |VVR MR|m/s^2 |V momentum tendency from Side Drag 157 |Um_Diss | 50 | 158 |UUR MR|m/s^2 |U momentum tendency from Dissipation 158 |Vm_Diss | 50 | 157 |VVR MR|m/s^2 |V momentum tendency from Dissipation 159 |Um_Advec| 50 | 160 |UUR MR|m/s^2 |U momentum tendency from Advection terms 160 |Vm_Advec| 50 | 159 |VVR MR|m/s^2 |V momentum tendency from Advection terms 161 |Um_Cori | 50 | 162 |UUR MR|m/s^2 |U momentum tendency from Coriolis term 162 |Vm_Cori | 50 | 161 |VVR MR|m/s^2 |V momentum tendency from Coriolis term 163 |Um_dPHdx| 50 | 164 |UUR MR|m/s^2 |U momentum tendency from Hydrostatic Pressure grad 164 |Vm_dPHdy| 50 | 163 |VVR MR|m/s^2 |V momentum tendency from Hydrostatic Pressure grad 165 |Um_Ext | 50 | 166 |UUR MR|m/s^2 |U momentum tendency from external forcing 166 |Vm_Ext | 50 | 165 |VVR MR|m/s^2 |V momentum tendency from external forcing 167 |Um_AdvZ3| 50 | 168 |UUR MR|m/s^2 |U momentum tendency from Vorticity Advection 168 |Vm_AdvZ3| 50 | 167 |VVR MR|m/s^2 |V momentum tendency from Vorticity Advection 169 |Um_AdvRe| 50 | 170 |UUR MR|m/s^2 |U momentum tendency from vertical Advection (Explicit part) 170 |Vm_AdvRe| 50 | 169 |VVR MR|m/s^2 |V momentum tendency from vertical Advection (Explicit part) 171 |VISrI_Um| 50 | |WU LR|m^4/s^2 |Vertical Viscous Flux of U momentum (Implicit part) 172 |VISrI_Vm| 50 | |WV LR|m^4/s^2 |Vertical Viscous Flux of V momentum (Implicit part) 173 |EXFhs | 1 | |SM U1|W/m^2 |Sensible heat flux into ocean, >0 increases theta 174 |EXFhl | 1 | |SM U1|W/m^2 |Latent heat flux into ocean, >0 increases theta 175 |EXFlwnet| 1 | |SM U1|W/m^2 |Net upward longwave radiation, >0 decreases theta 176 |EXFswnet| 1 | |SM U1|W/m^2 |Net upward shortwave radiation, >0 decreases theta 177 |EXFlwdn | 1 | |SM U1|W/m^2 |Downward longwave radiation, >0 increases theta 178 |EXFswdn | 1 | |SM U1|W/m^2 |Downward shortwave radiation, >0 increases theta 179 |EXFqnet | 1 | |SM U1|W/m^2 |Net upward heat flux (turb+rad), >0 decreases theta 180 |EXFtaux | 1 | |UM U1|N/m^2 |zonal surface wind stress, >0 increases uVel 181 |EXFtauy | 1 | |VM U1|N/m^2 |meridional surface wind stress, >0 increases vVel 182 |EXFuwind| 1 | |UM U1|m/s |zonal 10-m wind speed, >0 increases uVel 183 |EXFvwind| 1 | |VM U1|m/s |meridional 10-m wind speed, >0 increases uVel 184 |EXFwspee| 1 | |SM U1|m/s |10-m wind speed modulus ( >= 0 ) 185 |EXFatemp| 1 | |SM U1|degK |surface (2-m) air temperature 186 |EXFaqh | 1 | |SM U1|kg/kg |surface (2-m) specific humidity 187 |EXFevap | 1 | |SM U1|m/s |evaporation, > 0 increases salinity 188 |EXFpreci| 1 | |SM U1|m/s |precipitation, > 0 decreases salinity 189 |EXFsnow | 1 | |SM U1|m/s |snow precipitation, > 0 decreases salinity 190 |EXFempmr| 1 | |SM U1|m/s |net upward freshwater flux, > 0 increases salinity 191 |EXFpress| 1 | |SM U1|N/m^2 |atmospheric pressure field 192 |EXFroff | 1 | |SM U1|m/s |river runoff, > 0 decreases salinity 193 |EXFroft | 1 | |SM U1|deg C |river runoff temperature 194 |GGL90TKE| 50 | |SM LR|m^2/s^2 |GGL90 sub-grid turbulent kinetic energy 195 |GGL90Lmx| 50 | |SM LR|m |Mixing length scale 196 |GGL90Prl| 50 | |SM LR|1 |Prandtl number used in GGL90 197 |GGL90ArU| 50 | |SM LR|m^2/s |GGL90 eddy viscosity at U-point 198 |GGL90ArV| 50 | |SM LR|m^2/s |GGL90 eddy viscosity at V-point 199 |GGL90Kr | 50 | |SM LR|m^2/s |GGL90 diffusion coefficient for temperature ------------------------------------------------------------------------------------ Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) ------------------------------------------------------------------------------------ 200 |GM_VisbK| 1 | |SM P M1|m^2/s |Mixing coefficient from Visbeck etal parameterization 201 |GM_hTrsL| 1 | |SM P M1|m |Base depth (>0) of the Transition Layer 202 |GM_baseS| 1 | |SM P M1|1 |Slope at the base of the Transition Layer 203 |GM_rLamb| 1 | |SM P M1|1/m |Slope vertical gradient at Trans. Layer Base (=recip.Lambda) 204 |GM_Kux | 50 | 205 |UU P MR|m^2/s |K_11 element (U.point, X.dir) of GM-Redi tensor 205 |GM_Kvy | 50 | 204 |VV P MR|m^2/s |K_22 element (V.point, Y.dir) of GM-Redi tensor 206 |GM_Kuz | 50 | 207 |UU MR|m^2/s |K_13 element (U.point, Z.dir) of GM-Redi tensor 207 |GM_Kvz | 50 | 206 |VV MR|m^2/s |K_23 element (V.point, Z.dir) of GM-Redi tensor 208 |GM_Kwx | 50 | 209 |UM LR|m^2/s |K_31 element (W.point, X.dir) of GM-Redi tensor 209 |GM_Kwy | 50 | 208 |VM LR|m^2/s |K_32 element (W.point, Y.dir) of GM-Redi tensor 210 |GM_Kwz | 50 | |WM P LR|m^2/s |K_33 element (W.point, Z.dir) of GM-Redi tensor 211 |GM_PsiX | 50 | 212 |UU LR|m^2/s |GM Bolus transport stream-function : U component 212 |GM_PsiY | 50 | 211 |VV LR|m^2/s |GM Bolus transport stream-function : V component 213 |GM_KuzTz| 50 | 214 |UU MR|degC.m^3/s |Redi Off-diagonal Temperature flux: X component 214 |GM_KvzTz| 50 | 213 |VV MR|degC.m^3/s |Redi Off-diagonal Temperature flux: Y component 215 |GM_KwzTz| 50 | |WM LR|degC.m^3/s |Redi main-diagonal vertical Temperature flux 216 |GM_ubT | 50 | 217 |UUr MR|degC.m^3/s |Zonal Mass-Weight Bolus Transp of Pot Temp 217 |GM_vbT | 50 | 216 |VVr MR|degC.m^3/s |Meridional Mass-Weight Bolus Transp of Pot Temp 218 |SIarea | 1 | |SM M1|m^2/m^2 |SEAICE fractional ice-covered area [0 to 1] 219 |SIareaPR| 1 | |SM M1|m^2/m^2 |SIarea preceeding ridging process 220 |SIareaPT| 1 | |SM M1|m^2/m^2 |SIarea preceeding thermodynamic growth/melt 221 |SIheff | 1 | |SM M1|m |SEAICE effective ice thickness 222 |SIheffPT| 1 | |SM M1|m |SIheff preceeeding thermodynamic growth/melt 223 |SIhsnow | 1 | |SM M1|m |SEAICE effective snow thickness 224 |SIhsnoPT| 1 | |SM M1|m |SIhsnow preceeeding thermodynamic growth/melt 225 |SIhsalt | 1 | |SM M1|g/m^2 |SEAICE effective salinity 226 |SItices | 1 | 218 |SM C M1|K |Surface Temperature over Sea-Ice (area weighted) 227 |SIuice | 1 | 228 |UU M1|m/s |SEAICE zonal ice velocity, >0 from West to East 228 |SIvice | 1 | 227 |VV M1|m/s |SEAICE merid. ice velocity, >0 from South to North 229 |SIfu | 1 | 230 |UU U1|N/m^2 |SEAICE zonal surface wind stress, >0 increases uVel 230 |SIfv | 1 | 229 |VV U1|N/m^2 |SEAICE merid. surface wind stress, >0 increases vVel 231 |SIuwind | 1 | 232 |UM U1|m/s |SEAICE zonal 10-m wind speed, >0 increases uVel 232 |SIvwind | 1 | 231 |VM U1|m/s |SEAICE meridional 10-m wind speed, >0 increases uVel 233 |SIqnet | 1 | |SM U1|W/m^2 |Ocean surface heatflux, turb+rad, >0 decreases theta 234 |SIqsw | 1 | |SM U1|W/m^2 |Ocean surface shortwave radiat., >0 decreases theta 235 |SIatmQnt| 1 | |SM U1|W/m^2 |Net atmospheric heat flux, >0 decreases theta 236 |SItflux | 1 | |SM U1|W/m^2 |Same as TFLUX but incl seaice (>0 incr T decr H) 237 |SIaaflux| 1 | |SM U1|W/m^2 |conservative ocn<->seaice adv. heat flux adjust. 238 |SIhl | 1 | |SM U1|W/m^2 |Latent heat flux into ocean, >0 increases theta 239 |SIqneto | 1 | |SM U1|W/m^2 |Open Ocean Part of SIqnet, turb+rad, >0 decr theta 240 |SIqneti | 1 | |SM U1|W/m^2 |Ice Covered Part of SIqnet, turb+rad, >0 decr theta 241 |SIempmr | 1 | |SM U1|kg/m^2/s |Ocean surface freshwater flux, > 0 increases salt 242 |SIatmFW | 1 | |SM U1|kg/m^2/s |Net freshwater flux from atmosphere & land (+=down) 243 |SIsnPrcp| 1 | |SM U1|kg/m^2/s |Snow precip. (+=dw) over Sea-Ice (area weighted) 244 |SIfwSubl| 1 | |SM U1|kg/m^2/s |Potential sublimation freshwater flux, >0 decr. ice 245 |SIacSubl| 1 | |SM U1|kg/m^2/s |Actual sublimation freshwater flux, >0 decr. ice 246 |SIrsSubl| 1 | |SM U1|kg/m^2/s |Residual subl. freshwater flux, >0 taken from ocn 247 |SIactLHF| 1 | |SM U1|W/m^2 |Actual latent heat flux over ice 248 |SImaxLHF| 1 | |SM U1|W/m^2 |Maximum latent heat flux over ice 249 |SIaQbOCN| 1 | |SM M1|m/s |Potential HEFF rate of change by ocean ice flux 250 |SIaQbATC| 1 | |SM M1|m/s |Potential HEFF rate of change by atm flux over ice 251 |SIaQbATO| 1 | |SM M1|m/s |Potential HEFF rate of change by open ocn atm flux 252 |SIdHbOCN| 1 | |SM M1|m/s |HEFF rate of change by ocean ice flux 253 |SIdSbATC| 1 | |SM M1|m/s |HSNOW rate of change by atm flux over sea ice 254 |SIdSbOCN| 1 | |SM M1|m/s |HSNOW rate of change by ocean ice flux 255 |SIdHbATC| 1 | |SM M1|m/s |HEFF rate of change by atm flux over sea ice 256 |SIdHbATO| 1 | |SM M1|m/s |HEFF rate of change by open ocn atm flux 257 |SIdHbFLO| 1 | |SM M1|m/s |HEFF rate of change by flooding snow 258 |SIdAbATO| 1 | |SM M1|m^2/m^2/s |Potential AREA rate of change by open ocn atm flux 259 |SIdAbATC| 1 | |SM M1|m^2/m^2/s |Potential AREA rate of change by atm flux over ice 260 |SIdAbOCN| 1 | |SM M1|m^2/m^2/s |Potential AREA rate of change by ocean ice flux 261 |SIdA | 1 | |SM M1|m^2/m^2/s |AREA rate of change (net) 262 |ADVxHEFF| 1 | 263 |UU M1|m.m^2/s |Zonal Advective Flux of eff ice thickn 263 |ADVyHEFF| 1 | 262 |VV M1|m.m^2/s |Meridional Advective Flux of eff ice thickn 264 |SIuheff | 1 | 265 |UU M1|m^2/s |Zonal Transport of eff ice thickn (centered) 265 |SIvheff | 1 | 264 |VV M1|m^2/s |Meridional Transport of eff ice thickn (centered) 266 |DFxEHEFF| 1 | 267 |UU M1|m^2/s |Zonal Diffusive Flux of eff ice thickn 267 |DFyEHEFF| 1 | 266 |VV M1|m^2/s |Meridional Diffusive Flux of eff ice thickn 268 |ADVxAREA| 1 | 269 |UU M1|m^2/m^2.m^2/s |Zonal Advective Flux of fract area 269 |ADVyAREA| 1 | 268 |VV M1|m^2/m^2.m^2/s |Meridional Advective Flux of fract area 270 |DFxEAREA| 1 | 271 |UU M1|m^2/m^2.m^2/s |Zonal Diffusive Flux of fract area 271 |DFyEAREA| 1 | 270 |VV M1|m^2/m^2.m^2/s |Meridional Diffusive Flux of fract area 272 |ADVxSNOW| 1 | 273 |UU M1|m.m^2/s |Zonal Advective Flux of eff snow thickn 273 |ADVySNOW| 1 | 272 |VV M1|m.m^2/s |Meridional Advective Flux of eff snow thickn 274 |DFxESNOW| 1 | 275 |UU M1|m.m^2/s |Zonal Diffusive Flux of eff snow thickn 275 |DFyESNOW| 1 | 274 |VV M1|m.m^2/s |Meridional Diffusive Flux of eff snow thickn 276 |ADVxSSLT| 1 | 277 |UU M1|psu.m^2/s |Zonal Advective Flux of seaice salinity 277 |ADVySSLT| 1 | 276 |VV M1|psu.m^2/s |Meridional Advective Flux of seaice salinity 278 |DFxESSLT| 1 | 279 |UU M1|psu.m^2/s |Zonal Diffusive Flux of seaice salinity 279 |DFyESSLT| 1 | 278 |VV M1|psu.m^2/s |Meridional Diffusive Flux of seaice salinity 280 |SIpress | 1 | |SM M1|m^2/s^2 |SEAICE strength (with upper and lower limit) 281 |SIzeta | 1 | |SM M1|m^2/s |SEAICE nonlinear bulk viscosity 282 |SIeta | 1 | |SM M1|m^2/s |SEAICE nonlinear shear viscosity 283 |SIsigI | 1 | |SM M1|no units |SEAICE normalized principle stress, component one 284 |SIsigII | 1 | |SM M1|no units |SEAICE normalized principle stress, component two 285 |PLUMEKB | 50 | |SM MR| |fractional plume: [0-1] (unitless) 286 |oceSPtnd| 50 | |SM MR|g/m^2/s |salt tendency due to salt plume flux >0 increases salinity 287 |oceSPflx| 1 | |SM U1|g/m^2/s |net surface Salt flux rejected into the ocean during freezing, (+=down), 288 |oceSPDep| 1 | |SM U1|m |Salt plume depth based on density criterion (>0) ------------------------------------------------------------------------------------ Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) ------------------------------------------------------------------------------------